Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF full book. Access full book title Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets by Florentin Smarandache. Download full books in PDF and EPUB format.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF Author: Florentin Smarandache
Publisher: MDPI
ISBN: 303897384X
Category : Mathematics
Languages : en
Pages : 478
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF Author: Florentin Smarandache
Publisher: MDPI
ISBN: 303897384X
Category : Mathematics
Languages : en
Pages : 478
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 3038973858
Category : Mathematics
Languages : en
Pages : 480
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume II

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume II PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 3038974765
Category : Mathematics
Languages : en
Pages : 450
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, Or Neutrosophic Multisets

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, Or Neutrosophic Multisets PDF Author: Florentin Smarandache
Publisher:
ISBN: 9783038974772
Category : Neutrosophic logic
Languages : en
Pages :
Book Description


Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets PDF Author: Florentin Smarandache
Publisher: MDPI
ISBN: 3038974757
Category : Mathematics
Languages : en
Pages : 450
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.

Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications. (2nd edition)

Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications. (2nd edition) PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599735318
Category :
Languages : en
Pages :
Book Description
This book is part of the book-series dedicated to the advances of neutrosophic theories and their applications, started by the author in 1998. Its aim is to present the last developments in the field. This is the second extended and improved edition of Neutrosophic Perspectives (September 2017; first edition was published in June 2017). For the first time, we now introduce: — Neutrosophic Duplets and the Neutrosophic Duplet Structures; — Neutrosophic Multisets (as an extension of the classical multisets); — Neutrosophic Spherical Numbers; — Neutrosophic Overnumbers / Undernumbers / Offnumbers; — Neutrosophic Indeterminacy of Second Type; — Neutrosophic Hybrid Operators (where the heterogeneous t-norms and t-conorms may be used in designing neutrosophic aggregations); — Neutrosophic Triplet Weak Set (and con-sequently we have renamed the previous Neutros-ophic Triplet Set (2014-2016) as Neutrosophic Triplet Strong Set in order to distinguish them); — Neutrosophic Perfect Triplet; — Neutrosophic Imperfect Triplet; — Neutrosophic triplet relation of equivalence; — Two Neutrosophic Friends; — n Neutrosophic Friends; — Neutrosophic Triplet Loop; — Neutrosophic Triplet Function; — Neutrosophic Modal Logic; — and Neutrosophic Hedge Algebras. The Refined Neutrosophic Set / Logic / Probability were introduced in 2013 by F. Smarandache. Since year 2016 a new interest has been manifested by researchers for the Neutrosophic Triplets and their corresponding Neutros-ophic Triplet Algebraic Structures (introduced by F. Smarandache & M. Ali). Subtraction and Division of Neutrosophic Numbers were introduced by F. Smarandache - 2016, and Jun Ye – 2017. We also present various new applications in: neutrosophic multi-criteria decision-making, neutrosophic psychology, neutrosophic geographical function (the equatorial virtual line), neutrosophic probability in target identification, neutrosophic dynamic systems, neutrosophic quantum computers, neutrosophic theory of evolution, and neutrosophic triplet structures in our everyday life. Keywords: neutrosophy, neutrosophic duplets, neutrosophic duplet structures, neutrosophic multisets, neutrosophic hedge algebras, neutrosophic multi-criteria decision-making, neutrosophic psychology, neutrosophic geographical function, neutrosophic probability in target identification,

Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties

Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties PDF Author: Vasantha Kandasamy
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 14
Book Description
In this paper we for the rst time develop, de ne and describe a new class of algebraic codes using Neutrosophic Quadruples which uses the notion of known value, and three unknown triplets (T; I; F) where T is the truth value, I is the indeterminate and F is the false value.

Neutrosophic Sets and Systems, Vol. 33, 2020

Neutrosophic Sets and Systems, Vol. 33, 2020 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 353
Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 341
Book Description
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.

Fixed Point Theorem for Neutrosophic Triplet Partial Metric Space

Fixed Point Theorem for Neutrosophic Triplet Partial Metric Space PDF Author: Memet Sahin
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 7
Book Description
Neutrosphic triplet is a new theory in neutrosophy. In a neutrosophic triplet set, there is a neutral element and antielement for each element. In this study, the concept of neutrosophic triplet partial metric space (NTPMS) is given and the properties of NTPMS are studied. We show that both classical metric and neutrosophic triplet metric (NTM) are different from NTPM. Also, we show that NTPMS can be defined with each NTMS. Furthermore, we define a contraction for NTPMS and we give a fixed point theory (FPT) for NTPMS. The FPT has been revealed as a very powerful tool in the study of nonlinear phenomena. This study is also part of the “Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets” which is a special issue.