**Author**: Vasantha Kandasamy

**Publisher:**Infinite Study

**ISBN:**

**Category :**Mathematics

**Languages :**en

**Pages :**15

Skip to content
## Cher Journal

# NeutroAlgebra of Neutrosophic Triplets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download NeutroAlgebra of Neutrosophic Triplets PDF full book**. Access full book title **NeutroAlgebra of Neutrosophic Triplets** by Vasantha Kandasamy. Download full books in PDF and EPUB format.
## NeutroAlgebra of Neutrosophic Triplets

**Author**: Vasantha Kandasamy

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **15

**Book Description**

In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.

## NeutroAlgebra of Neutrosophic Triplets

**Author**: Vasantha Kandasamy

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **15

**Book Description**

In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.

## Neutrosophic Sets and Systems, Vol. 38, 2020

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **662

**Book Description**

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

## Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebras

**Author**: Smarandache, Florentin

**Publisher:** IGI Global

**ISBN:** 1668434970

**Category : **Mathematics

**Languages : **en

**Pages : **333

**Book Description**

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.

## Neutrosophic Sets and Systems, Vol. 46, 2021

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Antiques & Collectibles

**Languages : **en

**Pages : **487

**Book Description**

Papers on neutrosophic programming, neutrosophic hypersoft set, neutrosophic topological spaces, NeutroAlgebra, NeutroGeometry, AntiGeometry, NeutroNearRings, neutrosophic differential equations, etc.

## International Journal of Neutrosophic Science (IJNS) Volume 2, 2020

**Author**: Broumi Said

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **94

**Book Description**

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.

## NeutroAlgebra is a Generalization of Partial Algebra

**Author**:

**Publisher:** Infinite Study

**ISBN:**

**Category : **Antiques & Collectibles

**Languages : **en

**Pages : **11

**Book Description**

In 2019 & 2020 Smarandache generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. And, in general, he extended any classical Structure, in no matter what field of knowledge, to a NeutroStructure and an AntiStructure.

## Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited)

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **16

**Book Description**

In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined. Again, in all classical algebraic structures, the Axioms (Associativity, Commutativity, etc.) defined on a set are totally true, but it is again a restrictive case, because similarly there are numerous situations in science and in any domain of knowledge when an Axiom defined on a set may be only partially-true (and partially-false), that we call NeutroAxiom, or totally false that we call AntiAxiom. Therefore, we open for the first time in 2019 new fields of research called NeutroStructures and AntiStructures respectively.

## NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Antiques & Collectibles

**Languages : **en

**Pages : **

**Book Description**

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric space, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.), and the NeutroAxiom results from the partial negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system. Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of the Non-Euclidean Geometries. In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present applications of many NeutroStructures in our real world.

## Neutrosophic Sets and Systems, Vol. 31, 2020

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **320

**Book Description**

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

## Neutrosophic Sets and Systems, Book Series, Vol. 31, 2020

**Author**: Florentin Smarandache

**Publisher:** Infinite Study

**ISBN:**

**Category : **Mathematics

**Languages : **en

**Pages : **318

**Book Description**

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

Book PDF Download Digital Journal

In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.

In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.

Papers on neutrosophic programming, neutrosophic hypersoft set, neutrosophic topological spaces, NeutroAlgebra, NeutroGeometry, AntiGeometry, NeutroNearRings, neutrosophic differential equations, etc.

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.

In 2019 & 2020 Smarandache generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. And, in general, he extended any classical Structure, in no matter what field of knowledge, to a NeutroStructure and an AntiStructure.

In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined. Again, in all classical algebraic structures, the Axioms (Associativity, Commutativity, etc.) defined on a set are totally true, but it is again a restrictive case, because similarly there are numerous situations in science and in any domain of knowledge when an Axiom defined on a set may be only partially-true (and partially-false), that we call NeutroAxiom, or totally false that we call AntiAxiom. Therefore, we open for the first time in 2019 new fields of research called NeutroStructures and AntiStructures respectively.

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric space, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.), and the NeutroAxiom results from the partial negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system. Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of the Non-Euclidean Geometries. In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present applications of many NeutroStructures in our real world.

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.