Advances in Mining Graphs, Trees and Sequences PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Mining Graphs, Trees and Sequences PDF full book. Access full book title Advances in Mining Graphs, Trees and Sequences by Takashi Washio. Download full books in PDF and EPUB format.

Advances in Mining Graphs, Trees and Sequences

Advances in Mining Graphs, Trees and Sequences PDF Author: Takashi Washio
Publisher: IOS Press
ISBN: 9781586035280
Category : Computers
Languages : en
Pages : 209
Book Description
Ever since the early days of machine learning and data mining, it has been realized that the traditional attribute-value and item-set representations are too limited for many practical applications in domains such as chemistry, biology, network analysis and text mining. This has triggered a lot of research on mining and learning within alternative and more expressive representation formalisms such as computational logic, relational algebra, graphs, trees and sequences. The motivation for using graphs, trees and sequences. Is that they are 1) more expressive than flat representations, and 2) potentially more efficient than multi-relational learning and mining techniques. At the same time, the data structures of graphs, trees and sequences are among the best understood and most widely applied representations within computer science. Thus these representations offer ideal opportunities for developing interesting contributions in data mining and machine learning that are both theoretically well-founded and widely applicable. The goal of this book is to collect recent outstanding studies on mining and learning within graphs, trees and sequences in studies worldwide.

Advances in Mining Graphs, Trees and Sequences

Advances in Mining Graphs, Trees and Sequences PDF Author: Takashi Washio
Publisher: IOS Press
ISBN: 9781586035280
Category : Computers
Languages : en
Pages : 209
Book Description
Ever since the early days of machine learning and data mining, it has been realized that the traditional attribute-value and item-set representations are too limited for many practical applications in domains such as chemistry, biology, network analysis and text mining. This has triggered a lot of research on mining and learning within alternative and more expressive representation formalisms such as computational logic, relational algebra, graphs, trees and sequences. The motivation for using graphs, trees and sequences. Is that they are 1) more expressive than flat representations, and 2) potentially more efficient than multi-relational learning and mining techniques. At the same time, the data structures of graphs, trees and sequences are among the best understood and most widely applied representations within computer science. Thus these representations offer ideal opportunities for developing interesting contributions in data mining and machine learning that are both theoretically well-founded and widely applicable. The goal of this book is to collect recent outstanding studies on mining and learning within graphs, trees and sequences in studies worldwide.

Special Issue on Advances in Mining Graphs, Trees and Sequences

Special Issue on Advances in Mining Graphs, Trees and Sequences PDF Author:
Publisher:
ISBN:
Category : Data structures (Computer science)
Languages : en
Pages : 198
Book Description


Special Issue on Advances in Mining Graphs, Trees and Sequences

Special Issue on Advances in Mining Graphs, Trees and Sequences PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description


New Trends in Applied Artificial Intelligence

New Trends in Applied Artificial Intelligence PDF Author: Hiroshi G. Okuno
Publisher: Springer
ISBN: 3540733256
Category : Computers
Languages : en
Pages : 1198
Book Description
This book constitutes the refereed proceedings of the 20th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2007, held in Kyoto, Japan. Coverage includes text processing, fuzzy system applications, real-world interaction, data mining, machine learning chance discovery and social networks, e-commerce, heuristic search application systems, and other applications.

Mining Graph Data

Mining Graph Data PDF Author: Diane J. Cook
Publisher: John Wiley & Sons
ISBN: 0470073039
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book you’ll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets. There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.

Journeys to Data Mining

Journeys to Data Mining PDF Author: Mohamed Medhat Gaber
Publisher: Springer Science & Business Media
ISBN: 3642280471
Category : Computers
Languages : en
Pages : 244
Book Description
Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing. The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions: 1. What are your motives for conducting research in the data mining field? 2. Describe the milestones of your research in this field. 3. What are your notable success stories? 4. How did you learn from your failures? 5. Have you encountered unexpected results? 6. What are the current research issues and challenges in your area? 7. Describe your research tools and techniques. 8. How would you advise a young researcher to make an impact? 9. What do you predict for the next two years in your area? 10. What are your expectations in the long term? In order to maintain the informal character of their contributions, they were given complete freedom as to how to organize their answers. This narrative presentation style provides PhD students and novices who are eager to find their way to successful research in data mining with valuable insights into career planning. In addition, everyone else interested in the history of computer science may be surprised about the stunning successes and possible failures computer science careers (still) have to offer.

Practical Graph Mining with R

Practical Graph Mining with R PDF Author: Nagiza F. Samatova
Publisher: CRC Press
ISBN: 143986084X
Category : Business & Economics
Languages : en
Pages : 495
Book Description
Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.

Advanced Data Mining and Applications

Advanced Data Mining and Applications PDF Author: Ronghuai Huang
Publisher: Springer Science & Business Media
ISBN: 3642033474
Category : Computers
Languages : en
Pages : 807
Book Description
This book constitutes the refereed proceedings of the 5th International Conference on Advanced Data Mining and Applications, ADMA 2009, held in Beijing, China, in August 2009. The 34 revised full papers and 47 revised short papers presented together with the abstract of 4 keynote lectures were carefully reviewed and selected from 322 submissions from 27 countries. The papers focus on advancements in data mining and peculiarities and challenges of real world applications using data mining and feature original research results in data mining, spanning applications, algorithms, software and systems, and different applied disciplines with potential in data mining.

XML Data Mining: Models, Methods, and Applications

XML Data Mining: Models, Methods, and Applications PDF Author: Tagarelli, Andrea
Publisher: IGI Global
ISBN: 1613503571
Category : Computers
Languages : en
Pages : 538
Book Description
The widespread use of XML in business and scientific databases has prompted the development of methodologies, techniques, and systems for effectively managing and analyzing XML data. This has increasingly attracted the attention of different research communities, including database, information retrieval, pattern recognition, and machine learning, from which several proposals have been offered to address problems in XML data management and knowledge discovery. XML Data Mining: Models, Methods, and Applications aims to collect knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods, and systems for XML data mining. This book addresses key issues and challenges in XML data mining, offering insights into the various existing solutions and best practices for modeling, processing, analyzing XML data, and for evaluating performance of XML data mining algorithms and systems.

Mining of Data with Complex Structures

Mining of Data with Complex Structures PDF Author: Fedja Hadzic
Publisher: Springer
ISBN: 3642175570
Category : Computers
Languages : en
Pages : 328
Book Description
Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints. - Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.) - Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees. - Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees. - Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach. - Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies. - Details the extension of the TMG framework for sequence mining - Provides an overview of the future research direction with respect to technical extensions and application areas The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry. In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.